Understand Rational and Irrational Numbers

Think It Through

What are rational numbers?

Rational numbers are numbers that can be written as the quotient of two integers. Since the bar in a fraction represents division, every fraction whose numerator and denominator is an integer is a rational number.

Any number that could be written as a fraction whose numerator and denominator are integers is also a rational number.

Think Every integer, whole number, and natural number is a rational number.

You can write every integer, whole number, and natural number as a fraction. So they are all rational numbers.

$$3 = \frac{3}{1}$$
 $-5 = -\frac{5}{1}$ $0 = \frac{0}{1}$ $\sqrt{25} = 5$ or $\frac{5}{1}$

The square root of a perfect square is also a rational number.

Think Every terminating decimal is a rational number.

You can write every terminating decimal as a fraction. They are all rational numbers.

You can use what you know about place value to find the fraction that is equivalent to any terminating decimal.

0.4	four <u>tenths</u>	$\frac{4}{10} = \frac{2}{5}$
0.75	seventy-five <u>hundredths</u>	$\frac{75}{100} = \frac{3}{4}$
0.386	three hundred eighty-six thousandths	$\frac{386}{1,000} = \frac{193}{500}$
$\sqrt{0.16} = 0.4$	four <u>tenths</u>	$\frac{4}{10} = \frac{2}{5}$

Think Every repeating decimal is a rational number.

You can write every repeating decimal as a fraction. So repeating decimals are all rational numbers.

As an example, look at the repeating decimal $0.\overline{3}$.

Let
$$x = 0.\overline{3}$$

$$10 \cdot x = 10 \cdot 0.\overline{3}$$

$$10x = 3.\overline{3}$$

The repeating portion goes to the tenths place. Multiply both sides by 10.

You can write and solve an equation to find a fraction equivalent to a repeating decimal.

$$10x - x = 3.\overline{3} - 0.\overline{3}$$

$$9x = 3$$

$$\frac{9x}{9} = \frac{3}{9}$$

$$x = \frac{3}{9} \text{ or } \frac{1}{3}$$

$$0.\overline{3} = \frac{1}{3}$$

Subtract x from the left side and $0.\overline{3}$ from the right side. The equation is still balanced because x and $0.\overline{3}$ are equal.

$$0.\overline{3} = \frac{1}{2}$$

Here's another example of how you can write a repeating decimal as a fraction.

$$x = 0.\overline{512}$$

$$1,000x = 512.\overline{512}$$

The repeating portion goes to the thousandths place. Multiply by 1,000.

$$1,000x - x = 512.\overline{512} - 0.\overline{512}$$

Subtract x from the left side and the repeating decimal from the right side.

$$999x = 512$$

$$x = \frac{512}{999}$$

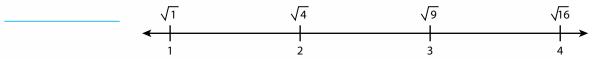
Reflect

1 What fraction is equivalent to 5.1? Is 5.1 a rational number? Explain.

Think About Estimating Irrational Numbers

Let's Explore the Idea What numbers are not rational? Let's look at a number like $\sqrt{2}$, the square root of a number that is not a perfect square.

2 Look at the number line below. The number $\sqrt{2}$ is between $\sqrt{1}$ and $\sqrt{4}$. Since $\sqrt{1} = 1$ and $\sqrt{4} = 2$, that means that $\sqrt{2}$ must be between what two integers?



- 3 Draw a point on the number line where you would locate $\sqrt{2}$. Where did you draw the point? _____
- 4 Calculate: 1.3² = _____ 1.4² = _____ 1.5² = _____
- 5 Based on your calculations, draw a point on the number line below where you would locate $\sqrt{2}$ now. Where did you draw the point?

- 6 Calculate: 1.41² = _____ 1.42² = _____
- **7** Based on these calculations, $\sqrt{2}$ is between which two decimals?
- 8 You can continue to estimate, getting closer and closer to the value of $\sqrt{2}$. For example, $1.414^2 = 1.999396$ and $1.415^2 = 2.002225$, but you will never find a terminating decimal that multiplied by itself equals 2. The decimal will also never have a repeating pattern.

 $\sqrt{2}$ cannot be expressed as a terminating or repeating decimal, so it cannot be written as a fraction. Numbers like $\sqrt{2}$ and $\sqrt{5}$ are not rational. You can only estimate their values. They are called **irrational numbers.** Here, *irrational* means "cannot be set as a ratio." The set of rational and irrational numbers together make up the set of real numbers.

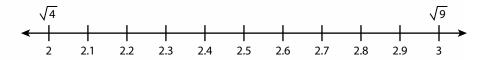
Now try this problem.

9 The value π is a decimal that does not repeat and does not terminate. Is it a rational or irrational number? Explain.

Let's Talk About It You can estimate the value of an irrational number like $\sqrt{5}$ and locate that value on a number line.

00000000000000

- $\sqrt{5}$ is between which two integers? Explain your reasoning.
- 11 Mark a point at an approximate location for $\sqrt{5}$ on the number line below. $\sqrt{5}$ is between which two decimals to the tenths place?



12 Calculate: 2.22² = _____ 2.23² = ____ 2.24² = ____

Based on your results, $\sqrt{5}$ is between which two decimals to the hundredths place?

Draw a number line from 2.2 to 2.3. Label tick marks at hundredths to show 2.21, 2.22, 2.23, and so on. Mark a point at the approximate location of $\sqrt{5}$ to the thousandths place.

Try It Another Way Explore using a calculator to estimate irrational numbers.

- 14 Enter $\sqrt{5}$ on a calculator and press Enter. What is the result on your screen?
- 15 If this number is equal to $\sqrt{5}$, then the number squared should equal _____.
- 16 Clear your calculator. Then enter your result from problem 14. Square the number. What is the result on your screen?
- 17 Explain this result.

Connect Estimating Irrational Numbers

Talk through these problems as a class, then write your answers below.

- 18 Illustrate Show that $0.\overline{74}$ is equivalent to a fraction. Is $0.\overline{74}$ a rational or irrational number? Explain. 19 Analyze A circle has a circumference of 3π inches. Is it possible to state the exact length of the circumference as a decimal? Explain.
- 20 Create Draw a Venn diagram showing the relationships among the following sets of numbers: integers, irrational numbers, natural numbers, rational numbers, real numbers, and whole numbers.

Estimating Irrational Numbers

Use what you have learned to complete this task.

21 Put It Together Consider these numbers:

 $\sqrt{50}$ 3.4 $\overline{56}$

0

 $\sqrt{\frac{4}{9}}$

0.38

 $\sqrt{81}$

2π

 $\sqrt{1.69}$

 $\sqrt{\frac{2}{9}}$

Part A Write each of the numbers in the list above in the correct box.

Rational Numbers	Irrational Numbers	

Part B Circle one of the numbers you said was rational. Explain how you decided that the number was rational.

Part C Now circle one of the numbers you said was irrational. Explain how you decided that the number was irrational.

Part D Draw a number line and locate the two numbers you circled on the line. Write a comparison statement using <, =, or > to compare the numbers.